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Abstract

Many multivariate statistical methods call upon the assumption of multivariate
normality. However, many applied researchers fail to test this assumption. This
omission could be due to either ignorance of the existence of tests of multivariate
normality or confusion about which test to use. Although at least 50 tests of multivariate
normality exist, relatively little is known about the power of these procedures. The
purpose of this study was to examine the power of 13 promising tests of multivariate
normality under a variety of conditions. Monte Carlo simulations were used to generate
10,000 data sets from many multivariate distributions, including the multivariate normal
distribution, normal mixtures, elliptically contoured distributions, and .heavily skewed
distributions. The test statistic for each procedure was calculated and compared with the
appropriate critical value. The number of rejections of the null hypothesis of multivariate
normality was tabled for each situation. No single test was found to be the most powerful
in all situations. The use of the Henze-Zirkler test is recommen&ed for a formal test of
the null hypothesis of multivariate normality. The use of supplementary proceduresl such
as Mardia’s measures of skewness and kurtosis and the chi-square or beta plot is also

recommended for diagnosing the cause of the non-normality.
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Introduction

Multivariate methodology is vital to not only avoid Type I error rate inflation, but
also to honor the reality that most effects have multiple causes and multiple consequences
(Thompson, 1996). Also, it is well known that many multivariate statistical methods,
including MANOV A, discriminant analysis, and canonical correlation, call upon the
' assumption_ of multivariate normality. According to Anderson (1984, pg. 3), “A major
reason for basing statistical analysis on the normal distribution is that this probabilistic
model approximates well the distribution of continuous measurements in many sampled
populations.”

The performance of many multivariate methods is affected by certain deviations
from normality (Looney, 1995). Hypothesis tests involving mean vectors are more
sensitive to skewness, while tests involving variance-covariance matrices are more
sensitive to kurtosis (Mardia, Kent, & Bibby, 1979; DeCarlo, 1997). However, the
assumption of multivariate normality often goes untested (Baxter, 1997). Horswell
(1990, pg. 162) declared that these tests are “largely academic curiosities, seldom used by
practicing statisticians.” Possible explanations for this omission by practitioners include
(Looney, 1995):

1. The practitioner is unaware of the existence of tests of multivariate
normality.

2. Convenient software for calculating the test statistic or p-value for a test
of multivariate normality is not readily available.

3. Even if software is used to calculate the test statistic, a special table may

be necessary to approximate the p-value of the test.
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4. The practitioner may not want to use a procedure when little is known
about the statistical power of the test.

5. The practitioner is reluctant to test for multivariate normality because he is
unsure of how to proceed if non-normality is detected.

An extensive literature exists regarding the testing of multivariate normality. One
reason that this literature exists is the fact that no single procedure can be uniformly most
powerful against all possible alternatives, or departures, from normality. At least 50
different procedures have been proposed for this problem. Since the possible variations
from normality are endless, Andrews, Gnanadesikan, and Warner (1973, pg. 95) warned
“seeking a single best method would seem to be neither pragmatically sensible nor
necessary.”

The main purpose of this study is to pinpoint which procedures for testing
multivariate normality are effective against a wide range of non-normal alternatives. The
procedure(s) that are identified as effective could be used by a researcher even and
- especially when the true distribution of the population is not known a priori. More
specifically, 13 different tests of multivariate normality were compared in a Monte Carlo
simulation study against many different distributions, ranging from the multivariate
normal to severe departures frofn normality. The reseafch questions listed below all
pertain to the power of the following “classical” (such as Mardia’s measures) and
“newer” tests of multivariate normality:

e Mardia’s test of multivariate skewness (1970)
e Mardia’s test of multivariate kurtosis (1970)

e Hawkins’ test (1981)
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Koziol’s test (1982)

The Mardia-Foster omnibus test (1983)

Royston’s test (1983)

The Paulson-Roohan-Sullo test (1987)

The Henze-Zirkler test (1990)

The Mardia-Kent omnibus test (1991)

The Romeu-Ozturk test (1993)

Singh’s classical and robust tests (1993)

The Mudholkar-Srivastava-Lin test (1995)

The research questions to be addressed on this body of procedures for testing

multivariate normality are:

1.

Do these tests reject the null hypothesis of multivariate normality
at the stated alpha level with data from a multivariate normal
population?

Which of these tests are most powerful against multivariate normal
mixtures?

Which of these tests are most powerful against elliptically
contoured distributions? _

Which of these tests are most powerful against heavily skewed
distributions?

Which of these tests are most powerful when faced with a non-
normal multivariate distribution whose marginals are normal?
Which of these tests are most powerful when faced with a non-
normal multivariate distribution that has multivariate normal
values for skewness and kurtosis?

I

Theoretical Framework

In general, analyses based upon variance-covariance matrices can be seriously

affected by the kurtosis of the distribution while analyses that involve the mean vectors

are more sensitive to skewness (Mardia, Kent, & Bibby, 1979; DeCarlo, 1997). But in

6
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many situations, we are either performing several different multivariate procedures upon
a data set or a procedure that involves hypotheses and/or assumptions about both location
and dispersion. Thus, generally we are concerned about deviations in terms of skewness,
kurtosis, or both simultaneously, and thus require a flexible method of testing
multivariate normality.

There is no shortage of proposed methods for assessing multivariate normality. A
current review of the literature has revealed that at least 50 procedures for testing
multivariate normality exist. Despite the abundance of methods, Rencher (1995) |
commented that since multivariate normality is not as-straightfoi'ward as univariate
normality, the “state of the art” is not as refined. Several reviews of the different
methods exist (see Andrews, Gnanadesikan, & Warner, 1973; Gnanadesikan, 1977,
Mardia, 1980; Koziol, 1986; and Looney, 1995), but noﬁe are completely comprehensive.
When compared to the amount of research available in develof)ing tests of multivariate
normality, relatively little work has been done in evaluating the quality and power of
these procedures. Examples of studies comparing the power of tests of multivariate
nonnalify are Ward (1988), Horswell (1990), Horswell & Looney (1992), Romeu &
Ozturk (1993), Young, Seaman, & Seaman (1995), and Bogdan (1999). None of these
studies is completely comprehensive and most were deliberately restricted in scope to a
limited category of tests.

Much of multivariate statistics consists of extensions of univariate methods to the
general case. Testing the goodness of fit of a data set to the multivariate normal
distribution is no exception. Most of the available multivariate normality testing

procedures are extensions of simpler tests of univariate normality. Thus, a large
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percentage of multivariate normality tests are either based on graphical plots, measures of
skewness and/or kurtosis, or goodness-of-fit proéedures. Unfortunately, few of these
tesfs are truly formal, in the sense that both the null distribution of the test statistic has
been found and the consistency of the test has been established (Koziol, 1983; Bogdan,
1999). In the words of Baringhaus and Henze (1988, pg. 399) and of Csorgo (1989, pg.
108), there are few “genuine” tests of multivariate normality.

In the review of the literature, four categories of tests of multivariate normality
were found which could classify virtually all of the available procedures. These
categories are: |

1. Graphical and Correlational Approaqhes
2. Skewness and Kurtosis Approaches

3. Goodnéss-of-ﬁt Approaches

4. Consistent Approaches

A very common informal approach to univariate normality is to construct a
normal probability plot or a quantile-quantile (Q-Q) plot. Normality is indicated if this
plot is linear. A more formal hypothesis test can be based upon the correlation of the Q-
Q plot. This time-honored approach to assessing normality was extended to the
multivariate situation by Healy (1968) with the chi-square plot. In this classical
procedure, the squared Mahalanobis distances are ordered and plotted against
approximate expected order statistics from the chi-square distribution. Gnanadesikan and
Kettenring (1972) were the first to note that the exact marginal distribution of the squared
Mahalanobis distances is é multiple of a beta distribution. For a purely visual inspection,

the difference between the chi-square or beta plot is insignificant. However, this
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difference is more crucial in developing a formal hypothesis test for multivariate
normality.

Singh (1993) developed two different tests based upon the correlation of the beta
plot. One version of the test used the standard classical estimators for the mean vector
and the variance-covariance matrix for calculating the Mahalanobis distances. The
second version of this test used robust M-estimators (Maronna, 1976) for the mean vector
and variance-covariance matrix. The robust version of this test wasl developed to
alleviate the fact that multivariate outliers would greatly influence the calculated value of
the Mahalanobis distances and thus the beta plot’s correlation coefficient. Singh’s
procedures have not been previously assessed in a comprehensive power study. |

Mardia’s (1970) introduction of multivariate measures of skewness and kurtosis
was another seminal paper in the field of multivariate normality testing. Mardia derived

affine invariant extensions for skewness and kurtosis. The parameters for multivariate

skewness and kurtosis are denoted £, , and f3, ,, respectively. For the multivariate

‘normal distribution, B, , =0 and 3, , = p(p +2). Mardia determined that a function of

the multivariate skewness is asymptotically distributed as a chi-square random variable

degrees of freedom and a function of the multivariate kurtosis is

with p(p+ 16)(p +2)

asymptotically distributed as é standard normal random variable. Mardia exploited this
to develop two tests for multivariate normality.

Mardia’s procedures, particularly his test based on multivariate kurtosis, are
probably the most used tests of multivariate normality. Mardia’s measures are available

in SAS in PROC CALIS or PROC MODEL and the kurtosis measure is available in
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several structural equation modeling packages. Previous research (Ward, 1988;
Horswell, 1990; Horswell & Looney, 1‘992; Romeu & Ozturk, 1993; Bogdan, 1999) has
indicated that Mardia’s procedures, particularly the skewness test, are among the best
available tests. It is inconceivable for any comprehensive study of the power of tests of -
multivariate normality to not consider Mardia’s measures. Thus, bofh were considered in
this study.

Many efforts have been made to construct a single “omnibus” test statistic that
combines elements of both skewness and kurtosis. Mardia and Foster (1983) derived six
possible test statistics. A statistic denoted Sw2, which used the Wilson-Hilferty
approximation (Bain & Englehardt, 1992) to derive an omnibus statistic with an
asymptotic chi-squafe distribution with two degrees of freedom, was found to be not
;‘)owerfuI by Ward (1988) or Horswell and Looney (1992). However, an alternative
statistic, Cy>, which factored in the covariance between multivariate skewness and
kurtosis, has not been previously studied. A more recent and promising statistic is an
omnibus statistic derived using Rao scdres (Mardia & Kent, 1991). Both the C,” test and
the Mardia-Kent test were considered.

A multitude of researchers have extended univariate goodness-of-fit procedures to
the general multivariate case in order to develop a test for multivariate normality. Many
goodness-of-fit procedures, such as the Kolmogorov-Smirnov, Cramer-von Mises, and
Anderson-Darling tests, are based on the empirical distribution function. A simpler but
less powerful technique is the familiar chi-square test. Although many promising tests of
mu_ltivariate normality fall into this category, Rgnchér (1995) has criticized this approach

as unrealistic due to the inherent “sparseness” in multivariate data.
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Hawkins (1981) proposed an extension of the Anderson-Darling statistic to test a
multivariate data set for both normality and homoscedasticity. Paulson, Roohan, and
Sullo (1987) proposed a similar test. Both procedures convert the squared Mahalanobis
distances into a statistic that will have a uniform distribution if the multivériate normal
distribution holds. Their inclusion in this study is due to encouraging results reported by
Ward (1988), Romeu and Ozturk (1993), and Young, Seaman, and Seaman (1995).

Koziol (1982) derived his test by extending the Cramer-von Mises test to employ

the ordered squared Mahalanobis distances and approximate expected order statistics

from the chi-square distribution originally used by Healy (1968). Koziol’s test had

relatively high power in the comparison studies of Romeu and Ozturk (1993) and Young,
Seaman, and Seaman (1995), leading to its consideration in this study.

The Shapiro-Wilk (1965) test is generally considered to be among the best
procedures for assessing univariate normality. Thus, it is only natural to extend it to the
multivariate case, as done by Royston (1983) and Mudholkar, Srivastava, and Lin (1995).
Although both procedures were considered here, Royston’s procedure was found to be
sensitive to the correlational structure between the variables (Romeu & Ozturk, 1993).

A more recent and less well known goodness-of-fit procedure is the Q, procedure
developed by Ozturk and Dudewicz (1992). Romeu and Ozturk (1993) expanded this
procedure to test for multivariate normality. ’i‘heir own power study indicated that the
Cholesky root version of this procedure was one of the most powerful procedures
available. The Romeu-Ozturk test was considered in this study.

All of the above procedures have been:criticized for their iack of consistency

(Baringhaus & Henze, 1988; Csogro, 1989; Henze & Zirkler, 1990; Bogdan, 1999).

11
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Recali that a statistic is consistent if it converges in probability to the pérameter that it is
estimating and is generally considered to be a mathematically desirable property (Hogg &
Craig, 1995). |

Epps and Pulley (1983) developed a test for univariate normality based upon the
empirical characteristic function. Baringhaus and Henze (1988) extended this test to the
multivariate case. It was proven to be consistent against all alteratives by Csorgo (1989)
and further extended into its current form by Henze and Zirkler (1990).

The Henze-Zirkler test statistic is based on using characteristic functions to
measure the distance between the hypothesized function (i.e. multivariate normal) and the
observed, or empiﬁcal, function. For consistency to hold, this distance must equal zero if
and only if the observed data are multivariate normal. Extensive derivations yielded a
closed form for the Henze-Zirkler statistic, which has an approximate lognormal
distribution.

This test was included in the power study largely due to the consistency of the
statistic. The consistency result implies the strong possibility that this test will be very
competitive against a wide range of alternatives and that this test is unlikely to have a
major weakness. Further, a similar test due to Bowman and Foster (1993) was found to
be a good performér by Bogdan (1999). However, Henze (1997) and Henze and Wagner
(1997) pointed out that Bowman and Fos&er’s integrated squared error statistic is actually
a special case of the Henze-Zirkler test.

Methodology
The purpose of this study was to compare the power of commonly used and

promising tests of multivariate normality. Because the null distribution of most test

12
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| statistics for multivariate normality is intractable, the Monte Carlo techriique was used.
SAS/IML (Interactive Matrix Language) was used for the simulations. In the
simulations, 10000 data sets'with sample size n = 25, 50, or 100 and dimension p =2, 3,
4, or 5 from both the multivariate normal distribution and several non-normal
distributions were generated. These limitations were imposed both to keep computing
time reasonable and to consider sample sizes that are borderline for multivariate analysis.
These small sample sizes are likely to be the situation whére the assumption of
multivariate normality is most critical to the researcher. The test statistic was calculated
for all 10000 data sets and compared to the appropriate critical value in order to estimate
the proportion of rejections for each test in each situation.
As a summary, the 13 tests of multivariate normality from four distinct categories
to be considered are:
A. Graphical and correlational test
1. Singh’s test (1993) of the correlation of the beta plot, utilizing classical
estimates of location and dispersion
2. Singh’s test (1993) of the correlation of the beta plot, utilizing robust M-
estimates of location and dispersion
B. Tests 6f multivariate skewness and kurtosis
1. Mardia’s (1970) test of multivariate skewness
2. Mardia’s (1970) test of multivariate kurtosis
3. The Mardia-Foster (1983) omnibus statistic

4. The Mardia-Kent (1991) omnibus statistic

13
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C. Multivariate extensions of univariate goodness-of-fit procedures

[

. Koziol’s (1982) extension of the Cramer-von Mises test
2. Hawkins’ (1981) extension of the Anderson-Darling test
| 3. The Paulsoﬁ-Roohan—Sullo (1987) extension of the Anderson-Darling test
4. Royston’s (1983) multivariate Shapiro-Wilk test
5. The Mudholkar-Srivastava-Lin (1995) extension of the Shapiro-Wilk test
6. The Romeu-Ozturk (1993) test
D. Consistent tests of multivariate normality that use the empirical characteristic
function
1. The Henze-Zirkler (1990) test
In a Monte Carlo study, it is important to choose the alternatives to multivariate
normality very carefully. Many past Monte Carlo studies have been criticized for being
“wasteful and superfluous” (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986, pg. 6) or
“haphazardly selected” (Horswell, 1990, pg. 167). Another limitation of some past
simulation studies was to only consider multivariate distributions that were merely
composed of marginal components independently and identically distributed from some
familiar univariate distribution. However, uncorrelated variables are néither common nor
interesting in multivariate analysis (Ward, 1988). Thus, any reasonable study comparing
the power of tests of multivariate normality will consider multivariate distributions with

correlated components. The multivariate distributions used for this study fulfilled this

- criterion and were generated with algorithms found in Johnson (1987).

The first distribution to be considered is the multivariate normal distribution itself.

The tests are to be compared against the normal distribution for two reasons: to serve as

14
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a check that the algorithms for calculating the tést statistics were programmed correctly
and to make sure that the tests only reject normality (and thus make a Type I error) at
approximately the nominal alpha level.

To simulate the situation of sampled subjects coming from two distinct normal
populations, various normal mixtures were considered. Three levels of mixing (or
contamination) were consideréd: p =09, p=0.788675, and p =0.5. The first choice
indicated mild contamination and is skewed and leptokurtic; the second choice indicates
moderate contamination and is skewed and mesokurtic; and the third choice indicates
severe contamination and is symmetric and platykurtic (Mardia, Kent, & Bibby, 1979;
Horswell, 1990). Further, the second choice, which is a non-normal distribution with
normal kurtosis, has been shown by Henze (1994) to be an alternative where Mardia’s
tests are not consistent and have low power.

Elljptically contoured distributions are symmetric distributions that have contours |
of quv,lal density that have an elliptical shape (Johnson, 1987; Rencher, 1998). These
distributions are clésely related to the normal distribution and are mild deviations from
normality. In fact, the multivariate normal distribution is a special case of an elliptical
distribution. The elliptical distributions considered in this study were the multivariate
uniform, which is highly non-normal due to platykurtosis (Romeu & Ozturk, 1993), two
members of the Pearson Type II family, and the multivariate t (with 10 degrees of
freedom) and Cauchy distributions, which are members of the Pearson Type VII family
and are very close to normality.

More severe departures from normality are seen in distributions that fall outside

of the elliptically contoured family and thus have skewness. It is expected that tests of

15
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multivariate normality would have very high power against this class of distributions.
The two examples of heavily skewed distributions considered in this study were the
multivariate chi-square and the multivariate lognormal. Both of these distributions also |
exhibit non-normal kurtosis.

A theoretically interesting departure from multivariate normality is the situation
where the univariate marginal distributions are normal but the joint distribution is not.
This situation is impossible to detect using only univariate methods and is challenging for
even the multivariate procedures. An example of a multivariate distribution that fits this
description is a member of the Knintchine family of distributions (Johnson, 1987,
Horswell, 1990) and was used in this study to answer the fifth research question.

Another theoretically interesting case that is difficult to detect is a non-normal
distribution that has the same values for multivariate skéwness and kurtosis as the normal
distribution. The “Generalized Exponential Power” family of distributions has this
property (Johnson, 1987; Horswell, 1990). A member of this family was used to answer
the last research question.

Results

“The first distribution simulated was the multivariate normal distribution. In this
case, the null hypothesis is true, so each test should reject at about thé 5% level. A
rejection rate far above the 5% level would indicate a problem with tﬁe Type I error rate.
The other distribﬁtions represent various deviations from multivariate normality, ranging
from mild to severe. In these cases, thé null hypothesis is false and should be rejected. A
low rejection rate, especially in comparison with other tests, would signify a probiem

with the Type II error rate and the power of the test.

16
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The performance of the 13 tests against the multivariate normal distribution is
found in Table 1. One test, the Mardia-Foster, had a very unreliable performance, with |
the observed power ranging from 0% to 100%. Hawkins’ test had an empirical power of
100% when p = 5 and n = 25, while the robust version of Singh’s test had very high
observed power, ranging from 9.9% to 79.2%. Three other tests (Mudh.olkar-Srivastava-
Lin, Romeu-Ozturk, and Mardia-Kent) had a maximum observed rejection rate of over
10%. An empirical Type I error rate that can be twice the nominal level or greater
renders all of these tests as very questionable choices and thus they are not considered
further.

INSERT TABLE 1 ABOUT HERE

Fifteen different normal mixture distributions were considered. In general, all of
the tests considered had low power against these distributions. As the amount of
contamination increased from 10% to 50%, the po.wver increased slightly. The power also
increased as the sample size and dimension increased. The most coriservative tests in this
situation were Mardia’s kurtosis, Henze-Zirkler, Koziol, Paulson—Rbohan-Sullo, and
Singh’s classical.

The empirical power of the tests was generally higher for situations where the two
different normal distributions had both unequal means and uﬁequal covariances. Tables

2, 3, and 4 give results of the simulations for the normal mixture distributions denoted by
PN, (u;,Z))+(1 - PN, (14,,%,), where P is a mixing parameter that was set equal to
either 0.9, 0.788675, or 0.5, u, is a vector of zeros, u, is a vector of ones, Z,is a

correlation matrix with all off-diagonal elements equal to 0.2, and X, is a correlation

17
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matrix with all off-diagonal elements equal to 0.5. Results of the other normal mixtures
are similar and are given in Mecklin (2000).
INSERT TABLES 2, 3, AND 4 ABOUT HERE

Five different symmetric distributions ﬁom the elliptically contoured family were
considered. As one would expect, Mardia’s test of multivariate skewness had virtually
no power against the multivariate uniform. Singh’s classical procedure had power as low
as 13.5% against the mﬁltivariate uniform. The Henze-Zirkler test and Royston’s test
were generally powefful, but had minimum power of around 40% when p =5 and n =25.
Mardia’s test of kurtosis had power ranging from 89% to 100% and the tests of Koziol
and Paulson-Roohan-Sullo had power of at least 99.8%. Results for the multivariate
uniform distribution are given in Table 5. Both versions of the Pearson Type II
distribution had extremely similar results, as shown in Mecklin (2000).
INSERT TABLE 5 ABOUT HERE

The Pearson Type VII family of distributions, including the multivariate t and
Cauchy, represent mild departures from normality. In general, the rate of rejection was
very low for these distributions, generally below 10%. In particular, Mardia’s test of
kurtosis ranges from only 0.6% to 3.9%. These results are given in Tables 6 and 7.
INSERT TABLES 6 AND 7 ABOUT HERE

Both the multivariate lognormal and chi-square are drastic departures from
normality and the power of the tests were very high. For the multivariate chi-square,
Mardia’s skewness, Royston’s test, and Henze-Zirkler all had power of at least 99%,

while Mardia’s kurtosis had power that dipped as low as 70% whenn=25. Asn

18
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increased to 100, the power of all procedures was at least 99.9%. The results from the
multivariate chi-square are given in Table 8.
INSERT TABLE 8 ABOUT HERE

For the lognormal distribution, empirical power was again very high, with the
exception of the erratically performing test of Mardia and Foster. Mardia’s kurtosis had
the lowest minimum power (82.5%), and the Koziol test had a minimum power of 82.6%.
Mardia’s skewness, Royston, and Henée-Zirkler all had a minimum power of at least
98%. These results are given in Table 9.
INSERT TABLE 9 ABOUT HERE

Multivariate techniques are crucial for detecting the non-normality of the
Knintchine distribution. Since it is symmetric, Mardia’s skewness performed very poorly
here. Mardia’s kurtosis performed modestly when n = 25 (1.8% to 24.8%), considerably
better when n = 50 (60.5% to 87.6%), and virtually always rejected normality whenn =
100 (99.7% to 100%). The other tests performed similarly to Mardia’s kurtosis. These

. results are in Table 10. |

INSERT TABLE 10 ABOUT HERE

The generalized exponential distribution is anothér theoretically fascinating
multivariate distribution, since it has the same values for skewness and kurtosis as thé
multivariate normal distribution. Not éurprisingly, Mardia’s tests had virtualiy no power
in this situation. The other procedures also had poor power. These results are in Table
11.

INSERT TABLE 11 ABOUT HERE

18
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Discussion
Many researchers (Bozdogan & Ramirez, 1986; Tsai & Koziol, 1988; Horswell,

1990; Horswell & Looney, 1992;.Kariya & George, 1995; Looney, 1995; Mudholkar,

Srivastava, & Lin, 1995; Baxter, 1997) have lamented the widespread neglect given to

testing the assumption of normality in multivariate analysis. Any attention given towards
assessing the assﬁmptions of a statistical procedure is time well spent. Testing for
multivariate nprmality is no exception.
Based upon both previous research (Gnanadesikan, 1977; Koziél, 1986; Ward,

1988; Horswell & Looney, 1992; Romeu & Ozturk, 1993; Looney, 1995; Young,
Seaman, & Seaman, 1995; Bogdan, 1999) and the results of this simulation study, no
single procedure is the most powerful in all situations. Of the 13 procedures considered
in this study, 6 of them (Mardia-Foster, Mardia-Kent, Singh’s robust, Mudholkar-
Srivastava-Lin, Romeu-Ozturk, Hawkins) had an empirical Type I error rate against the
muitivariate normal distribution that exceeded 10% in certain circumstances and thus are
not recommended.

. Of the seven remaining procedures, three of them (Koziol, Mardia’s skewness,
and Singh’s classical) §vere found to be liberal (i.e. rejected the normal distribuiion at a
rate slightly higher than 5%). Three other procedures (Mardia’s kurtosis, Henze-Zirkler,
and Paulson-Roohan-Sullo) are conservative, while Royston’s test consistently rejected at
nearly the nominal level of 5%. The tests of Koziol, Singh, and Paulson-Roohan-Sullo
suffer from the additional disadvantage of requiring the use of empirical critical values.
The proponents of the use of empirical critical values (Rofneu & Ozturk, 1993; Young,

Seaman, & Seaman, 1995), even for tests with existing asymptotic null distributions,
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point out that the asymptotic null distributions are conservative and thie use of empirically
obtained critical values increases power. However, an advantage of the asymptotic null
distributions is that specialized extensive tables are not necessary (Srivastava & Hui,
1987).

Of the seven remaining tests of multivariate normality, five have situations where
their power is appreciably less than their competitors. Against heavily skewed deviations
from ﬁormality, such as the chi-square or lognorrhal, Mardia’s kurtosis, Koziol’s test,
Singh’s test, and the Paulson-Roohan-Sullo test have power as low as 70-80% while
Royston’s test, the Henze-Zirkler test, and Mardia’s skewness have power of virtually
100%. However, Mardia’s skewness, as one would expect, has virtually no power
against symmetric but non-normal distributions such as the multivariate uniform, t,
Cauchy, or Knintchine distributions.

Some procedure for assessing the assumption of multiyariate normality should be
used. If one is going to rely on only one procedure for this purpose, the Henze-Zirkler
test is recommended. This recommendation is based upon both the acceptable Type I
error control and power that is either comparable or superior to the other procedures
against the entire breadth of considered distributions. Another procedure that had similar
power to the Henze-Zirkler and did not suffer from any serious deficiency was Royston’s
extension of the Shapiro-Wilk test. These empirical resﬁlt‘s indicate that Royston’s test
performs at least as well as Henze-Zirkler. Howeve?, some theoretical concerns exist for
Royston’s procedure. Unlike the Henze-Zirkler test, it is not consistent against all
alternatives. Further, Royston’s test involves a rather ingenious correction for the

correlation between the variables in the sample. Unfortunately, this correction has been
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criticized by Srivastava and Hui (1987) for not being adequately justified and by Romeu
and Ozturk (1993) for yielding a test that performs poorly when the variates are highly
correlated (7 ~ 0.9). Then again, data this highly correlated is rarely encountered in
educational applications.

Ano.ther possibility, originally suggested by Csorgo (1989), would be to use a
pfocedure that is both consistent and powerful to formally test the nuil hypothesis that the
data are from a multivariate normal distribution, and to follow up with less formal
procedures if normality was rejected. Based upon the results from this study, the use of
the Henze-Zirkler procedure is recommended for conducting the hypothesis test. Since
the Henze-Zirkler test statistic does not help in indicating the reason for the rejection of
normality, a test rejection should be complemented with graphical procedures such as a
chi-square plot and multivariate descriptive statistics such as Mardia’s skewness and
kurtosis. Based upon these supplemental results, the researcher then could choose the

most appropriate next step in the multivariate data analysis.

22



Multivariate Normality 22

References

Anderson, T.W. (1984). An introduction to multivariate statistical analysis (2nd
Ed.). New York: Wiley. '

Andrews, D.F., Gnanadesikan, R., & Warner, J.L. (1973). Methods for assessing
multivariate normality. In P.R. Krishnaiah (Ed.), Proceedings of the International
Symposium on Multivariate Analysis, Volume 3 (pp. 95-116). New York: Academic
Press.

Bain, L.J., & Englehart, M. (1992). Introduction to probability and mathematical
statistics. (2" Ed.). Belmont, CA: Duxbury.

Baringhaus, L., & Henze, N. (1988). A consistent test for multivariate normality
based on the empirical characteristic function. Metrika, 35, 339-348.

Baxter, M.J. (1997, April). Testing multivariate normality, with applications to
lead isotope data analysis in archaeology. Paper presented at the 25™ Anniversary
Conference of Computer Applications and Quantitative Methods in Archaeology,
Birmingham, UK. Available On-line:
http://www.bufau.bham.ac.uk/caa97.baxter/baxter.htm

Bogdan, M. (1999). Data driven smooth tests for bivariate normality. Journal of
Multivariate Analysis, 68, 26-52.

Bowman, A.W., & Foster, P.J. (1993). Adaptive smoothing and density based
tests of multivariate normality. Journal of the American Statistical Association, 88, 529-
537. ' '

Bozdogan, H., & Ramirez, D.E. (1986). Testing for model fit: Asessing Box-
Cox transformations of data to near normality. Computational Statistics Quarterly, 3,
127-150.

Csorgo, S. (1989). Consistency of some tests for multivariate normality.
Metrika, 36, 107-116.

Epps, TW, & Pulléy, L.B. (1983). A test for normality based on the empirical
characteristic function. Biometrika, 70, 723-726.

Gnanadesikan, R. (1977). Methods for statistical data analysis of multivariate
observations. New York: Wiley.

Gnanadesikan, R., & Kettenring, J.R. (1972). Robust estimates, residuals, and
outlier detection with multiresponse data. Biometrics, 28, 8§1-124.

23



Multivariate Normality 23

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., & Stahel, W.A. (1985). Robust
statistics: The approach based on influence functions. New York: Wiley.

Hawkins, D.M. (1981). A new test for multivariate normality and .
homoscedasticity. Technometrics, 23, 105-110.

Healy, M.J.R. (1968). Multivariate normal plotting. Applied Statistics, 17, 157-
161. :

Henze, N. (1994). On Mardia’s kurtosis test for multivariate normahty
Communications in Statistics: Theory and Methods, 23, 1031-1045.

Henze, N., & Zirkler, B. (1990). A class of invariant consistent tests for
multivariate normahty Communlcatlons in Statistics: Theory and Methods, 19, 3595-
3618.

Hogg, R.V., & Craig, A.T. (1995). Introduction to mathematical statistics ( 5t
edition). Englewood Cliffs, NJ: Prentice Hall.

Horswell, R.L. (1990). A monte carlo comparison of tests for multivariate
normality based on multivariate skewness and kurtosis. Unpubhshed doctoral
dlssertatlon Louisiana State University.

Horswell, R.L., & Looney, S.W. (1992). A comparison of tests for multivariate
normality that are based on measures of multivariate skewness and kurtosis. Journal of
Statistical Computation and Simulation, 42, 21-38.

Huber, P.J. (1981). Robust statistics. New York: Wiley.

Johnson, M.E. (1987). Multivariate statistical simulation. New York: Wiley.

Kariya, T., & George, E.I. (1995). Locally best invariant tests for multivariate
normality. Sankhya, 57, 440-451.

Koziol, J.A. (1982). A class of invariant procedures for assessing multivariate
normality. Biometrika, 69, 423-427.

Koziol, J.A. (1983). On assessing multivariate normality. Journal of the Royal
Statistical Society, Series B, 45, 358-361.

Koziol, J.A. (1986). Assessing multivariate normality: A compendium.
Communications in Statistics: Theory and Methods, 15, 2763-2783.

24



Multivariate Normality 24

Looney, S.W. (1995). How to use tests for univariate normality to assess
multivariate normality. The American Statistician, 49, 64-70.

Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with
applications. Biometrika, 57, 519-530.

Mardia, K.V. (1980). Tests of univariate and multivariate normality. In P.R.
Krishnaiah (Ed.), Handbook of statistics, Volume 1 (pp. 279-320). New York: North
Holland. ‘

Mardia, K.V., & Foster, K. (1983). Omnibus tests of multinormality based on
skewness and kurtosis. Communications in Statistics, 12, 207-221.

Mardia, K.V., & Kent, J.T. (1991). Rao score tests for goodness of fit and
independence. Biometrika, 78, 355-363.

Mardia, K.V., Kent, J.T., & Bibby, JM. (1979). Multivariate analysis. New
York: Academic Press.

Maronna, R.A. (1976). Robust m-estimators of multivariate location and scatter.
Annals of Statistics, 4, 51-67.

Mecklin, C.J. (2000). A comparison of the power of classical and newer tests of
multivariate normality. Unpublished doctoral dissertation, University of Northern
Colorado. ‘

Mudholkar, G.S., Srivastava, D.K., & Lin, C.T. (1995). Some p-variate
adaptions of the Shapiro-Wilk test of normality. Communications in Statistics: Theory
and Methods, 24, 953-985. '

Ozturk, A., & Dudewicz, E.J. (1992). A new statistical goodness-of-fit test based
on graphical representation. Biometrical Journal, 34, 403-427.

Paulson, A.S., Roohan, P., & Sullo, P. (1987). Some empirical distribution
" function tests for multivariate normality. Journal of Statistical Computation and
Simulation, 28, 15-30.

Rencher, A.C. (1995). Methods of multivariate analysis. New York: Wiley.

Rencher, A.C. (1998). Multivariate statistical inference and applications. New
York: Wiley.

Romeu, J.L., & Ozturk, A. (1993). A comparative study of goodness-of-fit tests
for multivariate normality. Journal of Multivariate Analysis, 46, 309-334.

23



Multivariate Normality 25

Royston, J.P. (1983). Some techniques for assessing multivariate normality
based on the Shapiro-Wilk W. Applied Statistics, 32, 121-133.

Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality.
Biometrika, 52, 591-611. ‘

Singh, A. (1993). Omnibus robust procedures for assessment of multivariate
normality and detection of multivariate outliers. In G.P. Patil and C.R. Rao (Eds.),
Multivariate Environmental Statistics (pp.445-488). Amsterdam: North-Holland.

Srivastava, M.S., & Hui, T.K. (1987). On assessing multivariate normality based
on Shapiro-Wilk W statistic. Statistics and Probability Letters, 5, 15-18.

Thompson, B. (1996, April). Problems with multivariate normality: Can the
multivariate bootstrap help? Paper presented at the annual meeting of the Society for
Applied Multivariate Research, Houston (ERIC Reproduction Service No. 398 284).

Tsai, K., & Koziol, J.A. (1988). A correlation type procedure for assessing
multivariate normality. Communications in Statistics: Computation and Simulation, 17,
637-651. '

Ward, P.J. (1988). Goodness-of-fit tests for multivariate normalitv.' Unpublished
doctoral dissertation, University of Alabama.

Young, D.M., Seaman, S.L., & Seaman, J.W. (1995). A comparison of six test
statistics for detecting multivariate nonnormality which utilize the multivariate squared-
radii statistic. The Texas Journal of Science, 47, 21-38.

26



Multivariate Normality 26

Table 1

Empirical Type I Error Rate Against the Multivariate Normal Distribution

" MVN n=25 n=50 n=100
Test p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5

"Skew 63 6.7 6.6 62 61 59 6.1 67 54 61 64 6.0
Kurt 09 05 04 1.0 1.8 1.6 23 25 31 29 35 3.5
M-F 166 999 0.0 0.0 11.4 709 1000 0.0 108 53.4 973 100.0
M-K 42 50 41 36 58 6.7 76 77 62 80 91 102
H-Z 3.8 30 26 22 46 36 35 3.0 43 42 3.7 3.8
Roy 49 52 47 48 52 49 51 51 48 52 53 4.7
MSL 49 82 127 170 58 107 163 212 64 140 200 24.6
R-O 49 70 93 106 48 70 99 115 45 72 94 117
Koz 62 76 74 8.1 52 56 65 64 53 49 57 5.6
Hawk 50 8.0 21.7 1000 44 58 96 279 51 51 6.6 109
PRS 39 42 47 47 41 41 49 45 43 42 47 4.9
S 6.6 6.7 6.6 64 51 48 48 49 51 51 438 5.1
Sro  29.8 503 67.6 792 152 259 400 522 99 153 200 265

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.
Skew = Mardia’s test of multivariate skewness

Kurt = Mardia’s test of multivariate kurtosis

M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test .

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Sros = Singh’s test (robust)
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Table 2

Empirical Power Against the Multivariate Normal Mixture Type 4 With Mixing
Parameter = 0.9

MVN =25 =50 =100
Test p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4.  p=>5

Skew 7.2 7.9 8.4 8.0 87 102 106 102 95 127 142 140
Kurt 1.0 0.6 0.6 1.1 2.9 2.4 2.1 23 4.5 4.3 3.7 39
M-F 13.8 998 0.0 0.0 9.7 663 100.0 0.0 89 436 93.7 100.0
M-K 5.1 59 54 4.5 81 102 11.0 112 107 146 169 16.6
H-Z 4.2 3.1 2.7 2.7 4.0 4.0 3.7 3.6 4.8 4.6 4.6 4.4
Roy 6.5 6.1 128 144 5.2 6.4 6.2 8.1 5.7 5.8 6.2 6.5
MSL - 7.1 129 248 375 56 11.5 189 27.7 6.7 125 203 286
R-O 4.7 6.9 96 113 4.8 7.4 93 121 5.1 74 100 112
Koz 6.1 6.1 6.4 7.5 5.3 53 5.6 59 59 5.4 4.9 5.0
Hawk 5.3 7.6 219 100.0 5.3 6.7 9.7 297 6.1 6.7 74 128
PRS 4.2 3.9 3.8 4.6 4.7 43 43 4.4 5.2 5.1 4.6 4.6
S 7.2 6.9 6.8 7.0 62 62 6.0 59 6.3 6.8 6.7 6.5
SroB 314 522 702 802 178 299 432 577 125 196 253 324

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test '

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Sror = Singh’s test (robust)
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Table 3

Empirical Power Againét the Multivariate Normal Mixture Type 4 With Mixing
Parameter = 0.788675

MVN n=25 n=50 n=100
Test p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p= p=5

Skew - 8.0 7.9 83 .87 93 109 107 121 115 161 173 176
Kurt 1.2 0.5 0.7 1.0 2.6 2.5 1.8 2.4 3.3 3.9 33 3.5
M-F 144 998 0.0 0.0 9.1 617 999 0.0 7.7 352 90.8 100.0
M-K 5.1 5.5 5.3 4.6 79 102 102 114 101 150 166 173
H-Z. 4.4 34 3.1 3.0 4.9 4.2 3.9 4.0 4.7 4.9 5.1 5.0
Roy 5.7 6.1 124 140 5.5 5.9 6.2 8.6 6.1 6.4 6.8 7.0
MSL 63 132 255 387 6.6 139 232 331 81 186 303 425
R-O 4.2 6.9 93 114 4.7 7.5 98 124 53 74 109 13.0
Koz 5.6 6.6 6.6 7.4 5.7 5.6 53 5.9 5.7 5.1 4.7 4.7
Hawk 5.0 7.9 21.6 100.0 5.5 6.4 9.9 29.6 5.5 6.4 7.5 123
PRS 4.2 3.8 3.9 4.6 4.9 4.5 4.4 4.4 4.7 4.9 4.6 4.7
S 7.5 6.8 6.7 6.5 54 5.9 5.2 5.5 54 6.2 5.8 5.7

Srop 313 533 693 805 169 299 415 565 11.5 18.0 23.7 305

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the o = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test .

MSL = Mudholkar-Srivastava-Lin test
R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Sros = Singh’s test (robust)
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Table 4

Empirical Power Against the Multivariate Normal Mixture Typ'e 4 With Mixing
Parameter = 0.5

MVN =25 =50 =100
Test p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p= p=5

Skew 6.7 8.3 8.6 9.6 77 104 11.8 135 99 140 175 196
Kurt 0.8 0.6 0.5 0.8 2.0 2.3 23 2.8 3.0 4.0 4.2 4.2
M-F 13.9 99.8 0.0 0.0 92 614 999 0.0 82 373 923 100.0
M-K 4.3 5.5 5.8 5.5 6.8 9.8 118 134 85 141 175 213
H-Z 3.5 3.2 2.6 2.7 4.7 4.1 3.9 4.2 4.9 5.1 5.1 53
Roy 53 53 105 112 4.7 50 53 6.9 6.1 6.4 6.3 7.4
MSL 59 122 243 380 64 154 250 341 89 222 347 436
R-O 4.9 7.7 92 11.7 52 81 10.7 125 5.8 9.0 119 134
Koz 6.0 6.3 6.4 6.6 5.5 6.0 52 5.6 58 . 54 4.8 4.5
Hawk 4.8 7.6 224 100.0 4.7 6.5 102 317 5.2 6.2 75 145
PRS 4.0 3.7 3.7 4.0 4.5 4.7 4.2 4.7 4.5 5.0 4.6 5.1
S 6.9 6.6 7.3 7.4 53 6.3 5.7 6.2 52 6.4 6.8 7.5
SroB 309 515 708 822 158 301 441 594 11.1 189 270 36.6

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz =Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Srog = Singh’s test (robust)
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Empirical Power Against the Multivariate Uniform Distribution

MVN n=25 n=50 n=100

Test p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p= =5
Skew 0.3 0.0 0.0 0.0 0.1 00 00 0.0 0.0 0.0 0.0 0.0
Kurt 89.0 958 972 968 1000 100.0 1000 100.0 100.0 100.0 100.0 100.0
M-F 92.1 993 67.6 373 1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0
M-K 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.1 0.0 0.0
H-Z 1000 99.8 723 39.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Roy 100.0 665 50.7 403 100.0 1000 97.7 821 100.0 100.0 100.0 100.0
MSL 978 385 296 37.7 1000 961 61.0 423 1000 100.0 983 89.9
R-O 853 358 209 185 999 783 486 358 1000 995 884 764
Koz 100.0 1000 999 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Hawk 100.0 100.0 100.0.100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PRS 999 999 999 998 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
S 394 17.0 135 135 765 383 215 145 996 741 562 379
SroB 398 179 151 163 765 383 215 146 996 741 562 379

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis

M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test
Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test
Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test
S = Singh’s test (classical)
Srop = Singh’s test (robust)
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Table 6

Empirical Power Against the Multivariate t Distribution

MVN n=25 n=50 n=100
Test p= p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p= p=4 p=

Skew 59 6.4 6.5 5.8 6.1 5.8 6.3 6.9 5.8 6.5 6.5 6.0
Kurt 0.9 0.6 0.7 1.2 20 1.7 1.8 2.7 32 . 32 3.1 3.6
M-F 157 899 0.0 0.0 104 706 100.0 0.0 109 531 97.1 100.0
M-K 4.1 4.6 4.4 3.1 6.0 6.7 7.6 7.8 6.7 8.5 9.2 9.6
H-Z 3.9 3.0 2.6 2.3 4.5 3.5 3.5 3.1 52 4.3 4.2 3.6
Roy 5.4 5.0 5.0 4.6 5.1 5.1 5.1 7.1 52 5.5 5.5 5.5
MSL 4.7 83 127 173 55 109 16.6 267 65 133 200 270
R-O 5.0 6.8 89 114 5.0 6.8 93 117 5.1 7.7 9.6 115
Koz 6.0 7.1 7.6 8.0 5.0 6.0 5.7 6.8 54 5.4 5.1 54
Hawk 4.6 7.7 21.6 100.0 43 5.7 86 28.6 5.0 56 64 109
PRS 3.8 4.1 4.6 4.8 4.0 4.3 4.0 4.7 4.2 4.7 4.5 4.6
S 6.6 6.8 6.3 6.6 53 5.0 5.1 5.1 4.9 5.4 4.8 5.6
SroB 295 509 683 789 150 26.1 394 53.1 99 149 202 274

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Sros = Singh’s test (robust)
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Table 7

Empirical Power Against the Multivariate Cauchy Distribution

MVN | - n=25 n=50 n=100
Test p=2 p=3 p=<4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5

Skew 6.3 6.4 6.7 6.4 5.8 6.3 6.6 6.6 4.9 5.8 6.1 6.1
Kurt 0.8 0.6 0.6 0.9 1.9 1.6 20 23 3.0 2.9 3.0 3.9
M-F 15.1 999 0.0 00 109 69.7 1000 00 106 533 973 100.0
M-K 4.3 4.6 4.5 3.6 59 6.8 7.9 8.0 6.5 8.2 89 10.1
H-Z 3.7 3.0 2.7 2.6 4.2 33 3.8 33 4.9 4.4 4.0 3.5
Roy 4.9 5.1 50 141 55 5.0 52 7.0 50 31 5.0 6.0
MSL 5.0 8.6 127 348 59 108 196 26.6 66 12.7 195 263
R-O 4.7 6.9 g8 11.0 5.1 69 89 116 4.9 6.6 104 115
Koz 6.0 7.3 6.9 8.1 5.1 5.8 6.1 6.8 5.7 5.0 5.1 5.8
Hawk 4.7 74 21.7 100.0 4.5 5.6 93 281 5.4 53 62 100
PRS 3.9 4.0 3.9 5.1 4.2 4.1 4.5 4.6 4.7 4.3 4.2 4.8
S 6.7 6.8 6.7 6.8 4.8 4.7 5.1 5.2 5.0 5.2 4.5 4.8
SroB 293 508 676 790 153 264 392 528 9.7 155 19.6 269

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Srop = Singh’s test (robust)
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Table 8

- Empirical Power Against the Multivariate Chi-Square Distribution

MVN n=25 n=50 - n=100
Test p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5

Skew 993 997 99.8 99.8 1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Kurt 70.0 747 737 719 965 986 993 99.5 1000 100.0 100.0 100.0
M-F 51.7 944 3.9 03 964 973 988 620 1000 100.0 100.0 100.0
- M-K 937 962 968 96.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
H-Z 99.6 99.8 99.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Roy 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MSL 99.8. 99.2 988 979 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
R-O .995 999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Koz 784 826 80.6 781 988 994 997 99.8 100.0 100.0 100.0 100.0

Hawk 81.0 913 96.8 1000 989 99.6 99.9 100.0 100.0 100.0 100.0 100.0 .

PRS 75.6 814 823 821 986 993 997 99.8 100.0 100.0 100.0 100.0
S 828 835 805 770 970 978 979 977 999 100.0 100.0 100.0
Sron 96.0 993 99.7 999 989 999 100.0 100.0 100.0 100.0 100.0 -100.0

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test
-MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Sroe = Singh’s test (robust)
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Table 9

Empirical Power Against the Multivariate Lognormal Distribution

MVN n=25 n=50 n=100
Test p=2 p=3 p=4 p=5 p=2 p=3 p= p=5 p=2 p=3 p= p=5

Skew 98.8 99.7 999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Kurt 825 903 937 958 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
M-F 67.1 100.0 20.7 63 985 99.6 100.0 953 100.0 100.0 100.0 100.0
M-K 952 980 993 99.5 1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0
H-Z 99.1 997 999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Roy 999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MSL 991 963 956 80.8 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
R-O 97.1 989 994 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Koz 826 923 948 966 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Hawk 872 97.1 996 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PRS 83.0 929 958 977 99.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0
S 888 921 934 93.1 98.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0
Sron 947 99.6 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the « = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test -

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Sros = Singh’s test (robust)
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Table 10

Empirical Power Against the Knintchine Distribution

MVN n=25 n=50 n=100
Test p=2 p=3 p= p=5 p=2 p=3 p= p=5 p=2 p= p= p=5

Skew 0.3 0.2 0.2 0.2 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0
Kurt 1.8 95 181 248 605 783 837 876 99.7 999 100.0 100.0
M-F 303 986 02 0.1 822 96.0 100.0 6.7 99.8 100.0 100.0 100.0
M-K 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 3.1 0.1 0.0 0.0
H-Z 12.7 105 9.2 73 532 499 440 372 948 948 938 905
Roy 200 156 125 334 847 80.8 788 79.8 100.0 100.0 100.0 100.0
MSL. 198 220 244 491 805 71.0 696 700 100.0 99.7 993 989
R-O 28.1 361 41.0 457 649 77.1 834 880 962 990 99.7 100.0
Koz 545 59.6 581 579 89.0 924 929 930 998 100.0 100.0 100.0
Hawk 332 451 692 100.0 77.8 851 892 969 995 998 999 100.0
PRS 364 419 445 472 811 869 883 89.6 995 999 100.0 100.0
S 217 160 133 11.7 451 307 225 178 902 760 614 512

SroB 266 288 362 432 450 326 277 287 889 748 60.7 51.6

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the & = 0.05 level.

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Srop = Singh’s test (robust)
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Table 11

Empirical Power Against the Generalized Eprnential Power Distribution

MVN n=25 n=50 n=100
Test p=2 p=3 p= p=5 p=2 p=3 p= p=5 . p=2 p=3 p=4 p=5

Skew 5.6 6.2 7.0 6.7 4.0 4.9 5.5 6.2 2.9 3.9 4.5 4.8
Kurt 0.9 0.5 0.5 0.6 1.2 1.0 1.1 1.7 1.3 1.6 1.8 2.0
M-F 183 999 0.0 00 122 73.6 1000 00 107 575 979 100.0
M-K 3.5 4.0 42 3.6 35 4.1 4.8 5.8 23 36 - 4.7 5.8
H-Z 4.7 3.5 2.8 2.8 5.4 5.0 4.0 3.9 7.8 6.9 63 59
Roy 5.5 5.6 9.7 108 4.6 4.6 4.7 6.1 5.6 6.0 5.1 5.5
MSL 58 11.8 219 355 57 11.8 17.6 263 73 139 201 274
R-O 5.6 74 101 122 8.1 11.1 132. 159 137 206 250 290
Koz 6.5 6.3 69 69 8.8 7.0 6.3 68 164 11.0 8.4 7.1
Hawk 92 11.0 237 1000 141 125 129 281 247 186 147 162
PRS 6.5 5.9 5.4 49 124 9.5 7.4 65 223 164 121 .99
S 4.5 55 6.2 6.3 2.7 3.4 3.8 4.2 3.1 .35 4.0 43
SroB 27.0 478 675 781 9.0 18.1 30.7 452 3.6 6.5 9.6 151

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.051evel. '

Skew = Mardia’s test of multivariate skewness
Kurt = Mardia’s test of multivariate kurtosis
M-F = Mardia-Foster omnibus test

M-K = Mardia-Kent omnibus test

H-Z = Henze-Zirkler test

Roy = Royston’s test

MSL = Mudholkar-Srivastava-Lin test

R-O = Romeu-Ozturk test

Koz = Koziol’s test

Hawk = Hawkins’ test

PRS = Paulson-Roohan-Sullo test

S = Singh’s test (classical)

Srop = Singh’s test (robust)
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